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Abstract 

Bubble collisions in cosmological phase transitions are explored, taking the non-abelian 
character of the gauge fields into account. Both the QCD and electroweak phase 
transitions are considered. Numerical solutions of the field equations in several limits 
are presented. 
PACS: 12.15.Ji, 12.38.Lg, 12.38.Mh, 98.80.Cq, 98.80.H~ 
Keywords: cosmological phase transitions; bubble collisions; non-abelian fields. 

1 Introduction 
The investigations reported in this talk have been motivated by an interest in studying 
cosmological phase transitions quantitatively, taking the non-abelian character of the gauge 
fields into account. Ultimately, we hope to identify observable consequences of cosmological 
phase transitions. 

First-order phase transitions proceed by nucleation of bubbles of the broken phase in the 
background of the symmetric phase. Bubble collisions are of special interest, as they may lead 
to observable effects such as correlations in the cosmic microwave background (CMB)[l] or as 
seeds of galactic and extra-galactic magnetic fields[2]. The quantum chromodynamic (QCD) 
and the electroweak (EW) phase transitions are both candidates of interest in these respects. 
The Lagrangian driving both the QCD and the EW phase transitions are essentially known 
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and make it possible to approach the physics of the phase transitions from first principles. 
However, a difficulty to  making reliable predictions is that the fundamental guage fields in 
both these instances are non-abelian: the gluon field in QCD and the W and 2 fields in 
the EW case. The quantitative role of non-abelian fields in cosmological phase transitions is 
poorly known and difficult to calculate due to the nonlinearities arising from the non-abelian 
character of the gauge fields. 

2 AToy Model 

The results reported in this talk are preliminary and correspond to equations of motion that 
follow from toy model Lagrangian, 

with 

The potential V ( @ )  in Eq. (1) leads to spontaneous symmetry breaking that will drive the 
first-order EW phase transition of interest in this work. The detailed form of V ( @ )  depends 
upon the theory, but one possible form is given by 

This Lagrangian consists of two coupled sectors. One of these is abelian, consisting of the 
scalar boson @ and the vector field Bi,  which are the familiar scalar Higgs and the vector 
boson of the weak hypercharge current, respectively, of the Weinberg-Salam model[3]. A 
first-order EW phase transition requires that the Lagrangian be considered in the framwork 
of the minimal supersymmetric model (MSSM) extension of the Weinberg-Salam model, and 
one may eventually need to explicitly incorporate the stop field for consistency, as discussed 
in more detail in Ref. [l]. The other sector is non-abelian and consists of the vector field 
Wi.  We will interpret this field as the gluon field of SU(2),,1,, in our study of the QCD 
phase transistion in Sect. 3 and as the three vector gauge bosons of the Weinberg-Salam 
model in our study of the of the EW phase transition in Sects. 4 and 5. This interpretation 
is possible, in the spirit of our toy model, since both fields satisfy the same field equations 
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in the absence of coupling (y = 0) between the sectors. Fermions do not appear in the toy 
Lagrangian, which reflects our focus so far on issues of non-abelian dynamics that arise in 
their absence. 

Equations of motion are obtained by minimizing the action, 

The result of doing this yields two “W-equations” 

a “@-equation”, 
aaf(z) ”a(4 = 0, (8) 

(9) 

a “B-equa,tion” , 
d2B, - dWJ3, + f(z)2g’$v(z) = 0 ,  

and an “f-equation” , 

The quantity 11, is defined as 

( 1 1 )  
9’ Y S  3 ~ , ( z ) - d , 0 + - B a -  -w, . 
2 2 

3 Bubble Collisions in QCD 

As discussed in Sect. 2, the equation of motion for the gluon field A; in SU(2),,1,, is the 
same as that of W i  above in the absence of coupling between the abelian and non-abelian 
sectors, i e  y = 0. In the gauge P A ;  = 0, this is 

dpdpAE + gPbC(2A;PAE - A;d,,Ap“) + g2fabcecef Ab P ApeAL = 0. (12)  

This equation has a well-known non-perturbative solution, namely the BPST instanton[4], 
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Figure 1: F(x,t) for the two bubbleswith instanton-like form 

Using an instanton-like ansatz in 1+1 dimensions, 

bubble collisions were found in Ref. [5] to evolve as solutions of the equation 

(15) 
2 

d2F = --d,F - 12F2 + 8(x2 - t 2 ) F 3  
X 

in Minkowski space, assuming periodic boundary conditions in time with 

1 1 
F(z ,O)  = + 

I (z - 3)2  + p2 (z + 3 ) 2  + p2 
&F(z,O) = 0 . 

The numerical solution to Eq. (15) is given in Fig. 1. Note the development of a gluonic 
wall at the x=O collision region. The wall grows rapidly beginning at time t = 1.1, and due 
to the singularities in the solution the accuracy of the calculations for t > 1.0 is limited. A 
possible connection to  CMB correlations is discussed in Ref. [l]. 

4 Bubble Collisions in the Abelian Higgs Model 
The abelian Higgs model has been of interest as a prototype for the generation of magnetic 
fields in the early universe in collisions of bubbles during a first-order EW phase transition[2, 
6, 81. The Lagrangian of the abelian Higgs model describes a complex scalar field coupled 
to  the electromagnetic (em) field Airn. It is defined by the Lagrangian Eq. (1) in the the 
abelian sector identifying Airn with the field B, and the electric charge e with the coupling 
parameter g' as e = g'/2. Equations of motion for the Higgs and magnetic field may be read 
off the results in Eqs. (8, 9,lO) for y = 0, ie., 
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and 

The quantity $, is now 
$J~(Z )  = do@ + eAz" . 

In this case, the phase transition is driven by the dynamics of the Higgs field along the 
lines studied by Coleman[7]. Coleman studied the case of a real scalar field (0 = 0), in 
which case the equation of motion for the scalar field becomes 

The potential V(f )  given in Eq. (4) describes the dependence of the energy of vacuum on the 
scalar field. It has two minima, corresponding to "true" and "false" vacuua. In Coleman's 
model, a symmetry breaking term is added to  V ( f )  to  give the true vacuum a slightly lower 
energy. 

One imagines that the system (here, the universe) begins in the false vacuum, and then, 
as time evolves, a transition is made to  the true vacuum. The phase transition proceeds as 
bubbles of the true vacuum nucleate in the false vacuum. Nucleated bubbles are tunneling 
(instanton) solutions of the f-equation in Euclidean space[7]. Once nucleated; bubbles 'grow 

In their analysis of the abelian Higgs model, Kibble and Vilenkin[2] suggested one way 
in which magnetic fields might be generated as bubbles collide. They considered1 the regime 
of gentle collisions, where f(z) remains constant, or nearly constant, in the region of overlap 
of the colliding bubbles. They were able to  gain insight into the generation of magnetic 
fields in this case by making an expansion about point f(z) = fo, which we shall refer to  
as the Kibble-Vilenkin point. For the case of gentle collisions, we can assume the following 
expansion, 

and collide as Minkowski space solutions of the f-equation. 1 :  , 

where a is the magnitude of fo -f(z) and is small by assumption. Substituting the expansion 
into the equations of motion and requiring that the equations be satisfied at each order in 
the expansion parameter a, the revelant 0 and B equations give, t o  leading order in a, the 
following results 

where now 
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Figure 2: Two bubbles colliding in the Coleman model as explained in the text 

These are essentially the equations of Kibble and Vilenkin[2], who demonstrated from them 
that magnetic fields encircle the overlap region of the colliding bubbles when the phase of 
the Higgs fields is initialy different within each bubble. Their analysis has been elaborated 
upon by Copeland, Saffin, and Tornkvist[8], who presented solutions in a convenient, closed 
form. 

For violent collisions, where f ( x )  changes substantially in the collision, the character of 
the problem requires numerical integration of the full coupled PDE. We close this section 
by showing numerical solutions of Eq. (21) using an algorithm for solving the PDE in 2 + 1 
dimensions. The initial condition is shown in the left-hand panel of Fig. 2, and the solution 
of the equations of motion just after the collision begins is shown in the right-hand panel. 
The solutions have been followed sufficiently far in time to  convince us that the algorithm 

I 

. 

is stable, and it is easily generalized to include multiple coupled fields. * /  

5 Bubble’Collisions in the EW Phase Transition I 

One of our main interests is to  understand the generation of the em field during the EW 
phase transition, specifically when non-abelian gauge fields play a role. In this case, y = 1, 
and the W ,  B,  and q5 (Higgs) fields are fully coupled. The physical Z and A“” fields are 
determined in terms of these fields as 

We consider here only the case of gentle collisions, extending the analysis given by Kibble 
and Vilenkin for the abelian Higgs model. In the future we will examine the case of more 
violent collisions solving the equations of motion numerically. 

As in the abelian Higgs model, the MSSM equations simplify upon expansion about the 
Kibble-Vilenkin point, 
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The fact that $ and W d  (for d = (1,2)) enter quadratically in the f-equation places two 
important constraints on these quantities: (1) $ and W d  (for d = (1,2)) must have an 
expansion in odd powers of all2, if we require the square of these quantities be analytic in 
a;  and, (2) expanding this equation to  leading order in al/', we find that the terms $(O), 
w(O)', and w(O)' must vanish. This is most easily seen in the Euclidean metric, from the fact 
that the square of each enters with the same sign. However, the same must be true in the 
Minkowski metric as well by analytic continuation. In view of these considerations, $a and 
W: for d = (1,2) have the following expansion 

It is natural that an expansion in the same parameter all2 remains appropriate for d = 3. 
However, there is no requiement that the leading term vanish, so we take 

The B-, 0-, and W-equations then give, to first order in al/', 

[a2 + ,(g2 f o2  + g t 2 ) ] $ p  = 0 

where now 

Comparing these equations to those in the abelian Higgs model, Eqs.(23,24,25), we see that 
the 2 field here plays the same role as the em field did in that case. Specifically, in this case, 
the phase difference of the Higgs field now determines the gauge field 2, of Eq.(27) within 
the bubble overlap region. Thus, for gentle collisions, the mathematical problem in leading 
order is no more complicated that it was in the abelian case. 

We may obtain A"" from Maxwell's equation, formed by taking the linear combination 
of the W(3)- and B-equations, Eqs.(6) and (9), suggested by Eq (26). We find that the first 
non-vanishing contribution to  the em current occurs at order a3I2 and depends cubically 
upon the non-abelian fields ~ 2 ) ~  calculated at order all2.  

Equations for w2ld may be obtained by expanding the B- and W-equations through 
order a'/'. We find for d = 3, 

and 



where we have expressed the equations in terms of u, defined as 

(37) 
9 
2 u&) = -w,(2) . 

Note that u!,’)~(z) follows from Eq. (36) once the driving term $(l)(x) has been independently 
determined from Eq. (34) and the solution of Eqs. (32,33). For d = 1 or 2 (corresponding to 
d’ = 2 or 1, respectively), we obtain the pair of equations 

Note that Eq. (38) is a linear equation for the non-abelian fields ~ ( ‘ 1 ~ .  The non-abelian field 
u(Ol3 enters nonlinearly, but it is determined from a separate, uncoupled equation, Eq. (35). 
Thus, for sufficiently gentle collisions, all relevant equations are linear. This means, among 
other things, that  one can avoid introducing a nonperturbative instanton/sphaleron ansatz 
as in Eq. (14), which would lead to  equations that do not transform properly under a lorentz 
transformation. 

6 Summary and Conclusions k 

Methods suitable for exploring the role of non-abelian dynamics in QCD and EW phase 
transitions have been explored. The QCD phase transition is essentially non-abelian, and 
our numerical investigations have been carried out using a BPST instanton-form solution to 
simplify the treatment of the non-linear dynamics. In the case of the EW phase transition, 
we found that for gentle bubble, collisions the non-abelian fields may be obtained by solving 
linear equations, so that a nonperturbative sphaleron ansatz is not needed to  account for the 
nonperturbative dynamics. Investigations are continuing for the case of gentle collisions along 
the lines outlined here. Our preliminary numerical work for the Coleman model suggests 
that  pursuing numerical solutions to  the PDE is a promising approach for determining the 
consequences of more violent collisions. 
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